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Abstract

To protect individuals’ privacy, the General Data Protection Regulation requires firms,
researchers, and policy makers to minimize data collection. We propose a framework
that combines generative adversarial networks (GANs) to sample data from any mar-
keting data set’s complex joint distribution and differential privacy to quantify cus-
tomers’ privacy risk. We apply our framework to two privacy-sensitive marketing
applications and consistently find that maximizing data collection enables a reduction
in customers’ privacy risk while maintaining the ability to derive meaningful insights
(a “Where’s Waldo” effect). This “Where’s Waldo” effect has a reciprocal shape; cus-
tomers’ privacy risk is inversely proportional to an analyst’s sample size. Subsequently,
we simulate a likelihood-based privacy attack to benchmark our framework against ex-
isting methods and find that it outperforms in terms of privacy protection. Collectively,
our findings can help firms control and communicate the level of customer privacy risk
they allow with stakeholders, reduce customers’ privacy risk by maximizing data col-
lection, and share data even under strict privacy regulations. In doing so, this study
helps researchers accelerate scientific cooperation and progress both within and outside
the field of marketing.
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INTRODUCTION

Every analysis that a firms perform to derive meaningful insights (i.e., utility) introduces

privacy risk for its customers (Dinur and Nissim 2003). Consumers are aware of this privacy

risk and perceive privacy concerns (Acquisti, Brandimarte, and Loewenstein 2015; Acquisti,

Taylor, and Wagman 2016). These privacy concerns may lead to less willingness to disclose

information, less effective personalization, and a decrease in firm and industry performance,

as well as an increase in regulatory oversight (Goldfarb and Tucker 2011; Martin, Borah,

and Palmatier 2017). To address these privacy concerns, the European Commission (2012)

has introduced the General Data Protection Regulation (GDPR), which outlines two data

protection directives: data minimization and anonymization.

Existing data protection methods (e.g., removing privacy-sensitive variables, swapping,

aggregation) that are used to comply with these directives remain privacy-sensitive. An

exciting development is Anand and Lee’s (2022) novel deep learning approach that samples

“synthetic” data that are only close in distribution to real data but random on an individual

level. Unfortunately, even this approach has “negative foreseen impacts on data protection”

(European Data Protection Supervisor 2022). For example, Chen et al. (2019) show how

intensive care unit patients can still be re-identified from synthetic data. This privacy risk

is a direct consequence of Dinur and Nissim (2003)’s Fundamental Law of Information Re-

covery (FLIR), which states that each time an analyst performs an analysis, they inevitably

introduce privacy risk for the individuals included in the data set, and with enough analyses,

every individual can be completely reconstructed (e.g., Garfinkel, Abowd, and Martindale

2018). The FLIR teaches us that there exists an inherent trade-off between privacy and

utility; the best we can do is to control the privacy risk an individual might incur when

being subjected to an analysis. Dwork and Roth (2014) introduce a mathematical definition

of privacy that controls this inherent privacy risk: differential privacy.

In this paper, we combine generative adversarial networks (GANs) with the current gold
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standard of privacy protection: differential privacy (Dwork and Roth 2014; Gupta, Moutafis,

and Schneider 2022). We mathematically limit customers’ privacy risk and navigate the

privacy-utility trade-off in two increasingly complex marketing applications. In contrast to

GDPR’s data minimization directive, we show that firms in fact can reduce their customers’

privacy risk by maximizing data collection. Our paper makes three contributions to the

marketing literature that addresses privacy:

• Conceptually, we contribute in two ways: (1) currently, GDPR requires data mini-

mization to protect individuals’ privacy. In contrast, we find that firms need to increase

a data protection method’s underlying sample size (i.e., data maximization). We call

this a “Where’s Waldo” effect; customers can reduce their privacy risk by hiding in

a large crowd. The “Where’s Waldo” effect is of a reciprocal shape; customers’ pri-

vacy risk is inversely proportional to an analyst’s sample size. (2) We stress with the

FLIR how each time an analyst performs an analysis, they inevitably introduce privacy

risk for the customers included. Existing data protection methods (e.g., Danaher and

Smith 2011; Schneider et al. 2018; Anand and Lee 2022) fail to limit this privacy risk

and are vulnerable to complete reconstruction of a firm’s customers. Although these

methods do introduce noise to the data, they do not mathematically limit a customer’s

privacy risk. As a result, firms that use existing methods remain vulnerable to pri-

vacy scandals as its customers’ privacy risk might grow uncontrollably over time. Our

framework proposes a way to navigate the privacy-utility trade-off; bridging the gap

between privacy officers and analysts. Ultimately, increasing the sample size aligns the

goals of these two parties.

• Methodologically, our contribution is twofold: (1) we build on the work of Anand

and Lee (2022) by combining GANs with differential privacy. Our framework enables

analysts to control, quantify, and interpret the privacy risk that customers pay (or the

level of privacy protection) as a consequence of marketing analytics. The majority of

the marketing literature on privacy addresses perceptions of privacy that are difficult
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to quantify (e.g., Beke et al. 2022; Goldfarb and Tucker 2011; Gupta, Moutafis, and

Schneider 2022; Martin, Borah, and Palmatier 2017). Using our framework, firms can

transparently communicate the level of consumers’ privacy risk that they allow with

policy makers (e.g., European Commission 2021). Alternatively, policy makers could

consider mandating a universal level of privacy risk. On the academic side, researchers

can use our framework to publish data together with a (Journal of Marketing Research)

publication to allow reproducibility of a study.1 (2) We develop a (likelihood-based)

privacy attack that allows analysts to obtain an empirical estimate of differential pri-

vacy’s privacy risk for any data protection method. We benchmark our framework

against existing methods and find that it outperforms in terms of privacy protection.

• Empirically, we provide extensive evidence for the “Where’s Waldo” effect in two

marketing applications. We navigate the privacy-utility trade-off in a churn setting,

where typically privacy-sensitive explanatory variables are used to explain churn, and

a pharmaceutical marketing application, where we show that policy makers can benefit

from sharing patient data to monitor public policy’s effectiveness. In the latter case,

the panel nature of the data introduces additional complexity in sampling data of high

utility. We estimate a variety of typical marketing models and calculate the deviation

between the protected and real parameter estimates to measure utility.

The remainder of this paper is organized as follows. In the following section, we discuss

related work on the development of data protection methods in marketing. We formally in-

troduce GANs, differential privacy and give theoretical arguments for the “Where’s Waldo”

effect in the second section. Next, we apply GANs in the context of two marketing ap-

plications and then discuss the privacy-utility trade-off. We conclude with a discussion of

limitations and directions for future research.

1The data and code are prepared in a Github repository and will be released upon publication for replication.
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EXISTING DATA PROTECTION METHODS

To protect consumers’ privacy, GDPR and Wedel and Kannan (2016) outline two key

principles relating to the processing of personal data: data minimization and anonymiza-

tion (European Commission 2012, Article 5). Data minimization pertains to limiting the

collection and disposal of data (e.g., Holtrop et al. 2017; Zhou, Lu, and Ding 2020), which

may impede the goal of academics to derive generalizable results. Data anonymization can

be accomplished with non-model-based and model-based approaches (Wieringa et al. 2021).

Non-model-based approaches include removing personal identifiable information, recoding,

swapping, randomizing data, or k-anonymization (Grewal, Gupta, and Hamilton 2021). The

FLIR demonstrates that non-model-based methods either remain privacy-sensitive or are too

extreme to derive any utility from the data (Dinur and Nissim 2003). To conserve space, we

do not review non-model based approaches and instead refer the reader to Wieringa et al.’s

(2021) comprehensive overview. To facilitate a comparison of our approach with existing

data protection methods, we present a summary of model-based data anonymization (see

Table 1 for an overview of the relevant marketing literature).

Table 1: An overview of the model-based data protection methods from the marketing
literature.

Study Method Multivariate Assumption(s) Free Privacy Definition Privacy Risk Control

Danaher and Smith (2011) MCMC ✓ ✗ ✗ ✗

Schneider et al. (2017) MCMC ✗ ✗ κ-differential privacy ✗

Schneider et al. (2018) MCMC ✗ ✗ Bayesian parameter shrinkage ✗

Anand and Lee (2022) GANs ✓ ✗ Maximum loss of privacy (MLP) ✗

This study GANs ✓ ✓ ε-differential privacy ✓

Note. MCMC, Markov Chain Monte Carlo.

Marketing literature

An early attempt to model-based data generation is Danaher and Smith’s (2011) in-

troduction of copula models to the marketing literature. Copula models allow us to learn

complex joint distributions, especially to account for the complex mixture of continuous
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and discrete variables that characterize marketing data. More formally, if we have m ran-

dom variables (X1, . . . , Xm) with distribution functions (p1(X1), . . . , pm(Xm)), we want to

learn the joint distribution p(X1, . . . , Xm). Sklar (1959) proposes that there always exists

a copula function C that captures the dependence between the random variables, that is,

p (X1 = x1, . . . , Xm = xm) = C (p1 (x1) , . . . , pm (xm)) for all xi ∈ Xi (for i = 1, . . . ,m). Im-

portantly, the functional form of this copula function is independent from the distributional

family of the marginals’ distribution; it only dictates the dependence between the marginals.

Danaher and Smith’s (2011) introduction of copula models represents a seminal development

because previous methods could not accurately account for such combinations of complex

distributional families. The authors rely on Bayesian estimation with Markov chain Monte

Carlo (MCMC) sampling to sample from a posterior distribution (see Table 1). A downside

of this Bayesian procedure is that it requires us to make assumptions (priors) and introduces

difficulties with respect to its convergence for complex dgps.

Schneider et al. (2017) lay the foundation of model-based privacy research in marketing

by explicitly studying the privacy-utility trade-off in a specific case: segmentation. The

authors aim to segment customer data with theoretical privacy guarantees. They draw

samples from a Dirichlet-multinomial model with a privacy parameter κ (kappa) to generate

protected data for each segment. A high κ results in a small level of privacy protection

but high utility, and a low κ results in a high level of privacy protection but low utility.

The study is highly innovative in that it is inspired by differential privacy, but it does not

exactly satisfy differential privacy (see “Privacy Definition” in Table 1). Schneider et al.

(2017) provide protection for a very specific marketing case and must rely on MCMC (see

Table 1); in addition, during identification of the segment of customers, a low parameter κ

substantially reduces the ability to derive meaningful insights.

Schneider et al. (2018) extend this earlier work by developing a Bayesian shrinkage model

with a privacy protection parameter κ. They argue that this model provides privacy protec-

tion by shrinking (with parameter κ) the variance of the parameters’ posterior distribution.
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For a range of values of κ, the authors obtain a posterior distribution of parameter estimates

using MCMC sampling and multiply these estimates with the original data to obtain a pos-

terior distribution of store sales. Consequently, the posterior distribution of store sales is

protected through shrinkage of the parameter estimates and can be shared. The authors note

that the study’s main limitation is that only a small number of variables can be included

with their approach. Furthermore, the methodology only allows for sampling a single pro-

tected variable. To sample this single protected variable, the methodology requires careful

specification of a functional form. For example, in the specific case of store sales, Schneider

et al. (2018) assume that the dgp of store sales follows a SCAN*PRO specification (Leeflang

et al. 2015); however, if the functional form is inaccurate, sampling from the posterior dis-

tribution of parameter estimates might lead to inaccurate data. Furthermore, the parameter

estimates that result in the posterior distribution are not robust to violations of econometric

assumptions.

Anand and Lee (2022) propose a novel deep learning approach to privacy protection.

They use GANs to learn a marketing data set’s dgp and solve marketing problems. This

allows them to sample customers that are random on an individual level but equal in distri-

bution to the real data. Our paper differentiates itself in the following ways: (1) the authors

assume that because a GAN’s generator does not have direct access to the real data, it pro-

tects privacy. However, there is nothing that restricts the generator from overfitting the real

data; risking the re-identification of real individuals (e.g., Chen et al. 2019). To measure this

re-identification risk (2), they operationalize privacy with the re-identification probability

of a customer in the original data set. To estimate this probability, the authors make a

strong assumption that re-identification risk (or privacy protection) is a (linear) function of

the variables that are in the data set (see “Assumption(s) Free” in Table 1). In doing so,

the authors implicitly ignore the FLIR’s implications, privacy risk that might come from

external data sets or variables (e.g., Narayanan and Shmatikov 2008), increasingly powerful

privacy attacks (e.g., Carlini et al. 2021), and events in the future that potentially increase
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this re-identification probability (see “Privacy Risk Control” in Table 1). For example, Chen

et al. (2019) consider Anand and Lee’s 2022 scenario where only a generator is shared and

find that individuals can still be re-identified, especially, with increasingly large synthetic

samples from the generator. Ultimately, Chen et al. (2019) finds that differential privacy

successfully limits this privacy risk and protects privacy.

More importantly, (3) if firms would rely on their method to share data, a firm’s cus-

tomers’ privacy risk is unbounded. For example, if the generator is shared, there is no control

over the number of synthetic samples. Therefore, there is nothing that restricts the privacy

risk to go to infinity over time as more synthetic samples are released. This is just one

example of a privacy attack which shows how firms remain vulnerable to privacy scandals

(e.g., Facebook and Cambridge Analytica or Netflix’s prize). Clearly, GANs without differ-

ential privacy have “negative foreseen impacts on data protection” and “remain vulnerable

to privacy attacks” as the European Data Protection Supervisor (2022) remarks.

In contrast, our framework mathematically proves a limit on the amount of customer’s

privacy risk and addresses all of these issues mentioned above (also see the “Differential

privacy” section). In addition, our framework allows entities to control, interpret and trans-

parently communicate the customers’ privacy risk. Importantly, we provide guidelines to

further reduce customers’ privacy risk, such as data maximization (see “Privacy Risk Con-

trol” in Table 1). Also, we provide a privacy attack that allows us to estimate differential’s

privacy risk in practice. Finally, in terms of utility, Anand and Lee (2022) do not modify a

GAN to learn customer dynamics, which we address in our (panel) pharmaceutical marketing

application.

Computer science literature

The computer science literature largely focuses on developing algorithms that satisfy

differential privacy. Abadi et al. (2016) develop differentially private stochastic gradient

descent (DPSGD) to limit individuals’ privacy risk in training neural networks. DPSGD

7



samples for each training iteration a mini-batch from the training set, clips the gradients

of each individual in the l2-norm to control the individuals’ contribution to the gradient,

and subsequently carefully adds Gaussian noise (also see Algorithm 1 in Abadi et al. 2016).

Compared with existing approaches, they allow us to train machine learning models (e.g.,

neural networks) and reduce the utility costs of increasing privacy protection. In other words,

they obtain a tighter estimate of the privacy risk for the same number of training iterations

(the privacy risk ε over training iterations grows less than linear). Another contribution is

that we can set, a priori to training, a desired level of privacy risk ε0.

Xie et al. (2018) develop GANs that satisfy differential privacy. They do not use DPSGD

but do use some of the underlying ideas of DPSGD (e.g., gradient clipping). The authors are

interested in the effect of varying levels of differential privacy (ε = ∞, 29, 14, 9.6) on utility.

In two experiments, they measure utility by (1) the visual appearance of handwritten digits,

(2) the GAN’s training progress, and the predictive accuracy of (3) handwritten digits and

(4) a disease. Importantly, the main contribution of Xie et al. (2018) is to prove that their

GAN can satisfy differential privacy.

Papernot et al. (2018) introduce Private Aggregation of Teacher Ensembles (PATE) in

an attempt to improve both privacy protection and utility. The idea is to first partition the

data set one wishes to protect and train a classification model on each partition. Papernot

et al. (2018) call these classification models “teachers”. To satisfy differential privacy, the

authors carefully introduce calibrated noise into the teachers’ outputs. Subsequently, PATE

requires a public data set (that is assumed to be private because it is already public) and

uses the teachers to label the public data. Because the labels satisfy differential privacy,

any model that is trained on the differentially private labels and public data also satisfies

differential privacy (Papernot et al. 2018). The main contribution is that by changing the

location where we introduce noise (teachers’ predictions instead of the gradients in Abadi

et al. 2016), we can both improve privacy protection and utility. Yoon, Jordon, and van der

Schaar (2019) translate this PATE framework to GANs. However, to use this framework
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analysts must rely on the availability of public data and assume that this does not increase

the privacy risk.

In this study, we use DPSGD to satisfy differential privacy. This prevents analysts from

relying on publicly available data, which can be extremely difficult or even impossible to

obtain in marketing applications (e.g., physicians’ prescriptions to patients) or because of

privacy regulations. Our study differs from the aforementioned studies in that we investigate

the ability to derive meaningful insights with typical marketing models and the managerial

implications of differential privacy. For example, we find that data maximization implies less

privacy risk (or stronger privacy protection). In addition, we simulate a privacy attack in

the context of a marketing application to empirically verify differential privacy’s promises.

METHODOLOGY

Dinur and Nissim (2003)’s FLIR shows how an adversary can completely reconstruct

a database by simply requesting a number of random statistics (e.g., Garfinkel, Abowd,

and Martindale 2018). Importantly, this remains possible even if some noise is added to

the calculated statistics. This noise can be introduced by existing (non-)model-based data

protection methods such as swapping, k-anonymity, Bayesian shrinkage, or GANs without

differential privacy. Although these methods do introduce noise into the data, it is impossible

to control this noise in such a way that we can formally prove privacy protection and thus

impossible to quantify the privacy risk (European Data Protection Supervisor 2022; Lin,

Sekar, and Fanti 2021). Dwork et al. (2006) develop differential privacy, which provides a

way of adding noise in a controlled way such that we can prove privacy protection.

Differential privacy

Differential privacy considers two hypothetical scenarios: one in which a person is in-

cluded in a data set versus one in which only this person is excluded from the data set.

Informally, differential privacy introduces a distribution of noise (or uncertainty) around
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the possible outcomes (from both scenarios) of any analysis. Noise is carefully added in

such a way that the distance between the distributions of the outcomes of the two scenarios

can be controlled. For a smaller distance, all the possible outcomes that might arise are

almost equal, and thus, it becomes increasingly difficult to infer from the outcomes whether

an individual’s data were used in the analysis. Importantly, this remains equally difficult

regardless of how many statistics one might compute (i.e., it controls the privacy risk from

FLIR), what kind of privacy attacks are developed (e.g., Carlini et al. 2018; Fredrikson, Jha,

and Ristenpart 2015; Liu, Tan, and Garg 2020) or what external information might become

available (e.g., McSherry and Mironov 2009; Narayanan and Shmatikov 2008). Formally,

differential privacy is defined as follows:

Definition 3.1. (Differential Privacy) Any randomized algorithm A : D → O with a space

of all possible data sets D for any subset O of outputs of A is differentially private if for any

two adjacent data sets D and D′ (D, D′ ∈ D), the following holds:

P[A(D) ∈ O] ≤ eεP[A(D′) ∈ O] + δ, (1)

where P[A(D) ∈ O] is the probability that the output of algorithm A using data set D is

in O using data set D and D′ is an adjacent data set that differs at most for one individual

(see Dwork and Roth (2014) for a textbook reference).

The most important parameter in Equation 1 is ε, which can be interpreted as the

privacy risk. Differential privacy promises that an individual’s privacy risk can increase

at most with a factor eε. A small ε implies a small difference between the two outcome

distributions (from both scenarios). Hence, the privacy risk for an individual is small, but

the utility for an analyst may be low due to the addition of noise that is required to satisfy a

small ε. A large ε implies a large difference between both scenarios and thus a relatively high

data utility at the cost of a large privacy risk. Therefore, we can view ε as a quantification of

the privacy-utility trade-off (Wieringa et al. 2021). Importantly, differential privacy does not
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imply a complete elimination of the privacy risk of an individual, but rather a bound on the

privacy risk that results from the FLIR (Dinur and Nissim 2003). In empirical applications,

a complete elimination of privacy risk (ε = 0) is considered useless, because the data utility

is completely destroyed by the addition of noise to satisfy such a level of differential privacy.

The original definition was introduced without δ. The introduction of δ relaxes ε-differential

privacy.2

GANs

A GAN can be explained by the idea of a game between two players. For illustrative

purposes, we explain the general principle of a GAN using a typical application: image

generation. The game is characterized by a competition between the generator G who tries

to create images from random noise, and the discriminator D, who acts as a detective to

classify the images as either false or real (see Figure 1).

z
G

Generator

pZ(z)

pdata(x)

x D(x) ∈ (0, 1)
D

Discriminator

Figure 1: A visualization of the two adversarial players that define a GAN. The generator
receives feedback from the discriminator on how to transform its weights to improve the

image quality.

The goal of the game for the generator is to create images of sufficient quality that fool

the discriminator into thinking they are real. The generator learns to transform random

2To illustrate why δ is introduced in Equation 1, consider a scenario in which an extremely rare outcome occurs,

which implies a small value for P[A(D′) ∈ O]. In such a scenario, we would require a very large ε to satisfy the

definition. δ allows us to protect privacy with a lower ε in such rare occasions. In line with the literature, we treat δ

as a constant and set it to the inverse of the number of observations n in our sample (Abadi et al. 2016).
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noise into high-quality images by maximizing the discriminator’s probability of making clas-

sification errors. Hence, the generator’s ability to generate high-quality images affects the

discriminator’s ability to classify the images as either false or real. Similarly, the discrim-

inator’s classification ability affects the generator’s ability to generate high-quality images.

Thus, this competition drives both players to improve their respective performances. When

the performance of the two players converges as a result of the competition between them,

the generator’s images are indistinguishable from the real images.

Formal objective

Formally, both players are functions represented by neural networks. Generally speaking,

a neural network Nθ admits n input units and maps this into k output units, and the network

is parameterized by its weights θ. We thus consider a function Nθ : Rn → Rk. Let Z be

an i.i.d. standard normal random variable with the distribution pZ(z). The generator is

defined as a neural network G that maps noise samples z from the distribution pZ(z) into

samples G(z) aimed to fool the discriminator. We can think of G as a random variable

based on a function G : Rn → Rk, where n is the dimensionality of the noise sample and k

is the dimensionality that the discriminator requires. In empirical applications, n is at least

as large as k, and if we expect that the dgp is very complex, we may make n substantially

larger than k. The distribution of G is defined as pG.

Let pdata denote the distribution of the dgp, real distribution or ground truth. In practice,

we do not have direct access to pdata, but only to a number of samples from pdata. The

discriminator is defined as a neural network D that takes samples of equal size from pdata

labeled with 1 and pG labeled with 0 from the generator as inputs. Similarly, we can think

of the discriminator as a random variable D that is a function D : Rk → (0, 1), where k is

the dimensionality of the data set. The discriminator predicts the probability of a sample to

be from pdata or from pG. The distribution of D is defined as pD. These functions compete
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in a zero-sum minimax game with the following objective (Goodfellow et al. 2014):

min
G

max
D

V (G,D), (2)

where the value function is defined as

V (G,D) := Ex∼pdata(x)[log(D(x))] + Ez∼pZ(z)[log(1−D(G(z))]. (3)

In the first part of Equation 3, Ex∼pdata(x) refers to the expected samples x from pdata.

The term log(D(x)) refers to the discriminator’s log-probability estimates that samples are

from pdata. In the second part of Equation 3, Ez∼pZ(z) refers to the expected samples z from a

multivariate standard normal, G(z) refers to a mapping from noise samples z to generator’s

samples, and D(G(z)) refers to the probabilities that the generator’s samples G(z) are from

pdata.

Graphically, we can interpret the value function V (G,D) as a three-dimensional space

with a loss surface that depends on the generator’s weights θ(G) and the discriminator’s

weights θ(D). On this surface, we train G and D in an iterative manner with gradient

descent-based optimization methods to arrive at a critical point.

To obtain a loss function for the discriminator, we can observe that D’s objective is to

maximize the log-likelihood of classifying a sample from pdata as true. Simultaneously, its

objective is to maximize the log-likelihood of not classifying a sample from pG as true. To

learn the discriminator’s distribution pD, D maximizes the following loss function:

J (D)(θ(D),θ(G)) = Ex∼pdata [log(D(x))] + Ez∼pZ [log(1−D(G(z))]. (4)

We let D (i.e., the gradients of Equation 4) satisfy differential privacy with DPSGD

(Abadi et al. 2016). By the post-processing property of differential privacy (Dwork and Roth

(2014), Proposition 2.1), we only have to let the discriminator satisfy a level of differential
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privacy (also see Yoon, Jordon, and van der Schaar 2019). It follows that the discriminator’s

predictions are differentially private, which implies that under post-processing the GAN’s

outcomes are equally differentially private (i.e., differentially private data).

The second term from Equation 3 expresses G’s objective to minimize the probability

that the generator’s samples evaluated by D are in fact from the generator. In other words,

the objective of G is to minimize the maximum attainable of D. To learn the generator’s dis-

tribution pG, Goodfellow (2016) reformulates the objective of G from Equation 3 to minimize

the following loss function:

J (G)(θ(D),θ(G)) = −Ez∼pZ [log(D(G(z)))]. (5)

In the limit, the minimax game results in pG converging in probability to pdata. As a result,

the generator maps random noise into high-quality samples that closely resemble samples

from the dgp.

The “Where’s Waldo?” effect

Abadi et al. (2016) prove that DPSGD provides O(qε0
√
T )-differential privacy, where

q = 1/n is a customer’s sampling probability from the training data set of size n, ε0 is an

analyst’s desired level of privacy risk a priori to training an algorithm, and T denotes the

number of training iterations.3 Ultimately, 1
n
ε0
√
T is the function that governs the observed

privacy risk (ε) after training an algorithm (i.e., ε = 1
n
ε0
√
T ). This implies that if the

number of individuals in the data set (n) grows, the sampling probability (1/n) decreases

and, as a result, the privacy risk (ε) decreases, ceteris paribus. In other words, to provide

stronger privacy protection a manager needs to maximize data collection and increase the

sample size to train our framework.

To isolate the effect of the sample size on privacy risk, we need to assume values for an

3We ignore δ for simplicity. This does not affect the managerial implications.
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analyst’s training iterations T and the desired level of privacy risk ε0. We assume that an

analyst needs 100,000 training iterations (T = 100,000 following Anand and Lee (2022)) to

obtain reasonable utility and assume the following range of possible values an analyst may

choose a priori to training: ε0 = (.01, 50). We use these values to obtain the privacy risk

and average the privacy risk per samples size:

(75000, 0.10)
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Figure 2: The relationship between privacy risk and sample size.

Visually, the “Where’s Waldo” effect is reciprocal shaped; the customers’ privacy risk

is inversely proportional to the sample size (see Figure 2). We highlight three scenarios to

illustrate the “Where’s Waldo” effect. Imagine that an analyst has a total sample size of

100,000 customers, but the analyst starts its analysis with 336 customers. Consequently, the

privacy risk of customers that are included increases with a factor of e23.53 = 16, 555, 761, 416.

If the analyst decides to increase the sample size to 3,333 customers, the customers’ privacy

risk decreases to a e2.37 = 10-factor increase. Finally, for a sample size of 75,000 customers,

the privacy risk decreases substantially to a e.1 = 1.1-factor increase. We present empirical

evidence for the “Where’s Waldo” effect next.
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MARKETING APPLICATIONS

We apply GANs with differential privacy to two marketing applications in which data

protection is important. In each application, we limit the sample size to study its effect

on the individuals’ privacy risk. For our first application, we study the drivers of churn.

We use a cross-sectional churn data set of 3,333 customers with 17 variables (see Table

2). The data set describes the arguably privacy-sensitive calling behavior of customers at a

telecommunication service provider, such as minutes called during the day or night.

Variable Min. 1st Q. Mean 3rd Q. Max.

Tenure (in months) 1 74 101 127 243

International plan (no/yes) 0 0 .09 0 1

Voicemail plan (no/yes) 0 0 .28 1 1

Day

- Minutes 0 143.7 179.8 216.4 350.8

- Number of calls 0 87 100.4 114 165

- Charge (in dollars) 0 24.4 30.6 36.8 59.6

Evening

- Minutes 0 166.6 201 235.3 363.7

- Number of calls 0 87 100.1 114 170

- Charge (in dollars) 0 14.2 17.1 20 30.9

Night

- Minutes 23.2 167 200.9 235.3 395

- Number of calls 33 87 100.1 113 175

- Charge (in dollars) 1 7.52 9.0 10.6 17.8

International

- Minutes 0 8.5 10.2 12.1 20

- Number of calls 0 3 4.5 6 20

- Charge (in dollars) 0 2.3 2.8 3.3 5.4

Customer service calls 0 1 1.6 2 9

Churn (no/yes) 0 0 .15 0 1

Table 2: Descriptive statistics of the churn data set.

Our second application is a pharmaceutical marketing application in which we study the

effect of detailing on physician’s drug prescription behavior. Recent disclosure laws aimed
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to increase the transparency of detailing efforts make data sharing of particular importance

(Guo, Sriram, and Manchanda 2020). We use a balanced prescription panel data set that

consists of 46,593 prescriptions, written by 336 physicians over a period of 52 weeks (see

Table 3). The panel nature of the data set poses a challenge to learn the relationships that

characterize such data sets. We modify our framework to specifically learn these relationships

and successfully sample differentially private panel data.

Variable Min. 1st Q. Mean 3rd Q. Max.

Physician No. 4 213.2 482.4 800.5 999

Week 1 13.8 26.5 39.3 52

Physician’s gender (male = 1) 0 1 .77 1 1

Practice size 1 4 5.37 7 8

Prescriptions (in units) 0 1 2.65 4 33

Patient’s age (in years) 40.64 60.08 62.73 65.92 82

Detailing (in units) 0 0 .97 0 36

Table 3: Descriptive statistics of the pharmaceutical data set.

Application 1: Sharing cross-sectional churn data

For many firms, customer retention is a top priority (Ascarza 2018; Lemmens and Gupta

2020). Consequently, the marketing literature has given considerable attention to developing

methodologies to explain and predict churn. To do so, managers and researchers are required

to use privacy-sensitive data. Holtrop et al. (2017), for example, find that customer age,

whether a customer has children, education level, income, social class, and prosperity level are

predictors of churn. When dealing with such privacy-sensitive data, firms’ data protection (or

the lack thereof) can lead to privacy concerns and have a negative effect on firm performance

and the industry as a whole (Martin, Borah, and Palmatier 2017).

To analyse the effect of privacy risk (ε) on utility, we train a deep convolutional GAN

(DCGAN) with DPSGD to satisfy differential privacy (Radford, Metz, and Chintala 2015).4

4Compared with GANs, DCGANs use convolutional layers instead of fully connected layers (see Radford, Metz,

and Chintala 2015). Before we apply differential privacy, we compare alternative architectures of GANs to determine

which type of GAN generates the highest quality of samples. These results are available upon request.
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We vary the privacy risk for the following values ε = {.01, .05, .1, .5, 1, 3, 5, 7, 13,∞}. Dif-

ferential privacy allows us to argue about the privacy risk of each individual customer as

follows: for the lowest level of privacy risk ε = .01, any initial knowledge an adversary might

have of a customer can increase at most or in a worst-case scenario with a multiplicative

factor of e.01 ≈ 1.01, or 1%. For a modest privacy risk ε = .1, a customer’s privacy risk

can increase at most with a factor of e.1 ≈ 1.10 or 10%. For increasingly larger values of ε,

the privacy risk increases exponentially. To illustrate, when ε is set to 13, an individual’s

privacy risk increases with a factor of 442, 413.
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Figure 3: The marginal distributions for Day calls and Evening minutes with a varying
levels of privacy protection (e = ε).

In Figure 3, we visualize the marginal distribution of the variables Day calls and Evening

minutes with varying levels of privacy risk. Visually, the DCGAN’s data without differen-

tial privacy (which equals ε ≈ ∞) learns the real marginal distributions with considerable

accuracy. Consequently, we keep the DCGAN’s architecture and only vary the amount of

privacy risk (ε). Interestingly, lower privacy risk (ε) and thus stronger protection implies
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increasingly higher probability on values that in reality do not occur. Somewhat impres-

sively, the differentially private probability densities start to resemble the real probability

density around ε = 1. This implies that we can accurately learn, visualize, and share the

probability densities at the cost of a factor of 2.72 increase in privacy risk. An alternative

interpretation is that: by publicly releasing the probability density that satisfies a level of ε

= 1, we increase any initial suspicion that an individual was included in the analysis with a

factor of 2.72.

What are the drivers of churn behavior among customers? To prevent customers from

churning, it is important to understand the reasons why they churn. To gain insight into

these drivers, we use both data sets to estimate a logistic regression. Specifically, we specify

the utility y∗i for a customer to be a function of the following:

y∗i = x′
iβ + νi := β0 + β1AccountLengthi + β2IntlPlani + β3VMailPlani + β4DayMinsi+

β5DayCallsi + β6EveMinsi + β7EveCallsi + β8NightMinsi + β9NightCallsi + β10IntlMinsi

+ β11IntlCallsi + β12CustServCallsi + νi, (6)

where β0 denotes the intercept; AccountLengthi describes customer i’s tenure; IntlPlani is

a dummy indicating whether a customer i has an international plan; VMailPlani denotes

whether a customer i has a voicemail plan; CustServCallsi denotes customer i’s number of

calls to customer service; the other variables describe calling behavior during the Day, Eve,

Night and International; and νi is an error term following an extreme value distribution.

We estimate Equation 6 using differentially private data and the real data. To measure

utility, we assume that the entity, say a firm, shares a data set with another party. The

objective of the receiving party is to derive real insights from the data that are shared. We

define the loss of utility of the data in terms of the mean absolute percentage deviation
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(MAPD) between protected and real parameter estimates:

MAPD =
1

J

J∑
j=1

∣∣∣∣∣ β̂j − β̃j

β̂j

∣∣∣∣∣ ,
where J is the total number of parameters, β̂j is an estimated unprotected or real parameter,

and β̃j is an estimated protected parameter. We assume that the betas from the estimations

on the real data β̂j have zero deviation from the true population parameters βj. This allows

us to visualize the trade-off between privacy risk (ε) and loss of utility (MAPD) in Figure 4.
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Figure 4: The trade-off between loss of utility (MAPD on a logarithmic scale) and
privacy risk (ε) for a scenario in which a manager uses logistic regression to explain churn.

To capture the effect of sample size on privacy risk, we first use every observation that

is available in the data set (n = 3,333). From Figure 4, we observe that for relatively strong

privacy protection ε ≤ 1, the ability to derive meaningful insights is limited. For ε ≥ 3, the

MAPD is almost equal to the situation in which we share data from the DCGAN without
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differential privacy (ε = ∞). Consequently, a manager can share or derive meaningful

insights (or the differentially private parameter estimates in Figure 5) at the cost of an

increase of a factor of e3 ≈ 20 in customer’s privacy risk. In other words, by being included

in the churn analysis, a customer’s privacy risk increases with a factor of 20 versus the

scenario in which the customer would have been excluded. Second, when we decrease the

sample size to 1,111 observations, a manager has to pay a higher price in terms of utility

to maintain the same level of privacy risk. For the same level of privacy risk (ε = 3), the

manager’s ability to derive insights decreases substantially (MAPD increases from 1.6 to

6.38). Alternatively, a manager can decide to increase the customers’ privacy risk to obtain

the same level of utility.

Henceforth, we only consider the scenario in which a manager has access to every obser-

vation in the churn data set (n = 3,333). In Figure 5, we observe the parameter estimates

that increase customers’ privacy risk with a factor of e3 ≈ 20. The parameter estimates are

almost all in the same direction as the real parameter estimates, which would lead to similar

marketing insights. For example, a manager would find from all data sets that having an

international plan or making more customer service calls increases a customer’s probability

of churning.

In conclusion, a manager has to pay an increase of e3 = 20 in privacy risk to derive

meaningful insights. To provide a benchmark, Abadi et al. (2016) derive meaningful utility

at the cost of a privacy risk increase of e8 ≈ 2,980. Importantly, we provide empirical

evidence for our “Where’s Waldo” effect; to reduce the price in utility for stronger privacy

protection (or lower privacy risk), we encourage analysts to maximize data collection.

Application 2: Sharing sensitive panel drug prescription data

In 2020, pharmaceutical firms invested approximately $2 billion to promote physicians’

prescription behavior, also referred to as detailing (Guo, Sriram, and Manchanda 2020).5

5See https://openpaymentsdata.cms.gov/summary.
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DCGAN without differential privacy and the real data.

Such detailing efforts have proved to be the most effective marketing instrument in the

pharmaceutical sector, but they are also subject to public debate (Kremer et al. 2008). Public

policy makers are concerned about the increasing use of detailing efforts and have enacted

disclosure laws to provide full transparency of such efforts (Guo, Sriram, and Manchanda

2020). This might require sharing sensitive patient data to demonstrate the legitimacy of

certain prescriptions to patients. As a result, data sharing of such privacy-sensitive patient

records is of importance to policy makers, physicians, and pharmaceutical firms to derive

empirical generalizations on the effect of detailing on prescription behavior or the effect of

disclosure laws and future regulation.

DCGAN. To sample and share a panel data set, we need to modify our framework to

learn the heterogeneity in behavior among physicians and the potential relationships over

time.6 These aspects make the GAN’s architecture considerably more complex. To alleviate

6To satisfy differential privacy, we have experimented with a large variety of architectures that are available
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these difficulties, we treat our panel data set such that a single physician with 7 variables

over 52 weeks is a single observation. In other words, a single observation or physician is a

matrix X i ∈ Rt×k where i indicates a physician, t indicates the 52 weeks, and k denotes the 7

variables present in the data set. In total, we have access to a sample of 336 physicians. This

implies that we satisfy differential privacy for the physician’s entire prescription behavior

(Dwork, Kohli, and Mulligan 2019). Ultimately, we use the DCGAN’s generator (see Web

Appendix 7) to sample 336 matrices and obtain differentially private data.

We find that due to the relatively small sample size (n = 336 versus n = 3,333), we

are required to introduce more noise to obtain the same level of privacy protection (Abadi

et al. 2016). Intuitively, differential privacy promises to reduce every single individual’s

contribution to the GAN’s outcomes. Counterintuitively, a smaller sample size forces us to

introduce more noise to hide this contribution. To understand this phenomena in greater

detail, consider the situation in which we would have access to a population sample of

physicians and obtain a significant effect of detailing on prescriptions (outcome). Now if we

exclude a single physician from the population, this effect (outcome) would only change with

a very small amount and would require little noise to hide. In our case, we only have 336

physicians, and thus, exclusion of one physician might lead to a relatively large change in

the effect (outcome). Consequently, a smaller sample size requires significantly more noise

to provide stronger levels of differential privacy. We decide to increase the privacy risk (ε),

such that our main goal becomes to investigating which level of privacy protection provides

the ability to derive utility.

We operationalize data utility in this case as the ability to learn the relationships between

the variables for each physician over time. The kernel matrices from the convolutional layers

convolve, in both the time and variable dimensions, over a batch of physician matrices to

learn the relationships over time and heterogeneity in behavior among physicians (see Web

Appendix 7). For early layers in the generator, we define a larger kernel matrix to learn

for GANs. Unfortunately, all of the alternatives introduce too many parameters, which increases the gradient’s

dimensionality and leads to excessive noise injection (Abadi et al. 2016). This hinders the ability to derive utility.
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dependencies over a longer time period. For increasingly deep layers in the network, we

shrink the kernel matrix size to learn dependencies over a shorter time period.

What is the effect of detailing on physicians’ prescription behavior? In light of disclosure

laws, policy makers might be interested in whether detailing has a statistically significant

effect on the number of physicians’ sensitive prescriptions. Therefore, we investigate whether

we can derive a similar detailing effect from the differentially private panel data. Let Rxit

be the prescriptions of a physician i within a week t. We specify the probability of observing

a number of Rxit prescriptions as

P (Rxit) =
exp(−λ̃it)λ̃

Rxit
it

Rxit!
, (7)

where

λ̃it = λitci = exp(β0 + β1Detailingit + δX it); (8)

Detailingit contains the detailing efforts such as actual calls or visits to physicians; X it is a

matrix that contains physician-specific control variables such as gender, a patient’s age and

practice size; and ci denotes the physician specific unobserved heterogeneity. We estimate a

pooled Poisson specification, random- and fixed-effects Poisson specifications, and a pooled

negative binomial specification.7 In Figure 6, we only visualize the parameter estimates from

the pooled Poisson specification because our results are robust to alternative specifications.

Now consider the situation in which we want to share data with policy makers who are

interested in the effect of detailing on prescriptions. First, from the real data, we observe

that for a one-unit increase in detailing, the expected prescriptions increase by a factor of

1.03. Second, if we use a DCGAN (ε = ∞), a policy maker would derive similar insights: a

one-unit increase in detailing leads to a 1.02 factor increase in prescriptions. If we introduce

7The pooled estimator treats the panel as a cross-section and assumes the unobserved heterogeneity ci to be 1

for all i. The random-effects Poisson assumes that ci is Gamma distributed. The fixed-effects estimator is estimated

with a sufficient statistic for ci (Hausman, Hall, and Griliches 1984).
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Figure 6: Parameter estimates of the pooled Poisson specification with differential privacy
(ε = 1,140), ε = ∞ and the real data.

differential privacy into the DCGAN, detailing’s observed effect becomes stronger. At the

cost of an increase in privacy risk of ε = 1,140, we observe a factor increase in expected

prescriptions of 1.04.

To visualize the privacy-utility trade-off, we operationalize loss of utility as the average

MAPD over all estimators. First, we consider the situation in which an analyst has access to

every physician’s prescription behavior (n = 336). When sharing data with infinite privacy

risk, we obtain MAPDs of .31, .32, .37, and .32 for the pooled, negative binomial, random-

effects, and fixed-effects Poisson, respectively. Hence, we observe an average MAPD of .33.

When we limit the privacy risk (ε = 1,140), we obtain an average MAPD of .57 (with MAPDs

of .43, .40, .69, and .77 for the pooled, negative binomial, random effects, and fixed-effects

Poisson, respectively). Next, we limit the sample size to 168 physicians and once more study

the privacy-utility trade-off. In Figure 7, we observe that the price of privacy protection in

utility consistently increases. For example for the same level of privacy risk (ε = 1,140), the
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ability to derive meaningful insights is reduced substantially (average MAPD increases to

1.13). Alternatively, one is forced to increase the privacy risk to improve the utility.
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Figure 7: The trade-off between loss of utility (MAPD) and privacy risk (ε) when using a
variety of estimations to explain physicians’ prescriptions. To obtain a single MAPD, we
average over the pooled Poisson, negative binomial, random-effects, and fixed-effects

estimation MAPDs.

In conclusion, we show that the insight of a statistically positive effect of detailing on

prescriptions is robust to assumptions we make during model specification. Although a

physician’s privacy risk increases substantially (ε = 1,140), a policy maker who does not

have access to the real data can derive similar insights while limiting the privacy risk.

Does detailing have a persistent effect on a physician’s prescriptions? To provide empir-

ical evidence for the long-term effects of marketing actions, extant marketing literature has

focused on whether marketing actions have a persistent or only temporary effect (Dekimpe

and Hanssens 1995; Nijs et al. 2001). Often, such studies use unit-root tests to investi-

gate whether time series are evolutionary or stationary followed by VAR models to derive
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an impulse-response function to interpret a possible persistent long-term effect. Similarly,

we are interested in whether the differentially private time series can provide meaningful

marketing insights with respect to the long-term effect of detailing. We first aggregate the

real and differentially private panel data sets on a weekly level by summing the number of

prescriptions and detailing efforts in Figure 8. Visually, the DCGAN with ε = ∞ seems to

learn the dynamics in the data well, whereas the introduction of differential privacy leads to

excessive noise.
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Figure 8: Time series of prescriptions for physicians aggregated on a weekly level (e = ε).

To study the possible long-term effect of detailing on prescription behavior of physicians,

we specify a VAR model and derive an impulse-response function. For the real data, the first

step is to take the first difference of prescriptions, which leads to stationary prescriptions

over time. Subsequently, we specify a VAR(2) where we set the number of lags based on the

Bayesian information criterion (BIC) from the real data:

yt = β0 + β1yt−1 + β2yt−2 + ut, (9)
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where yt, yt−1, and yt−2 are 2×1 vectors containing the first differences of prescriptions and

detailing efforts at time t, t− 1, and t− 2; β0 is a 2× 1 vector denoting the two constants;

β1 and β2 are 2× 2 matrices measuring the effect of prescriptions and detailing at t− 1 and

t− 2 on prescriptions and detailing at time t; and ut is a 2× 1 disturbance term vector.

We simulate the impulse-response function over time in Figure 9 (Dekimpe and Hanssens

1995). Overall, the real impulse-response function shows that detailing has no lasting effect

on physicians’ prescriptions. Clearly, a privacy protection of ε ≤ 46,200 introduces too much

noise to resemble the real impulse-response function. A manager is forced to pay ∞ privacy

risk to study the effect of detailing on prescriptions over time.
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Figure 9: Impulse-response function of detailing on the number of prescriptions based on
a VAR(2) model. We obtain confidence intervals by applying bootstrapping. We scale the

y-axis according to the real data (e = ε).

Next, consider the situation in which a pharmaceutical firm shares data with a policy

maker to study the effect of detailing on prescriptions over time. In terms of utility, a policy

maker would at first glance derive that detailing does have a positive effect on prescriptions
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of physicians (see Figure 6). When we study the effect of detailing over time, we observe

that detailing has a insignificant effect on prescriptions (Figure 9). In terms of privacy, we

consistently show that a larger sample size increases the ability to derive meaningful insights.

When we compare the two applications, we also observe that the privacy risk increases due

to the small sample size (ε = 1,140 vs. ε = 3). In addition, we find that for an increasing

granularity in insights (e.g., pooled Poisson vs. impulse-response function), we observe that

individuals have to pay a higher privacy risk price (ε = 1,140 vs. ε = ∞).

THE PRIVACY-UTILITY TRADE-OFF IN MARKETING

In theory, differential privacy provides a upper bound for the privacy risk an individual

can incur. For example, in our churn application we restrict the customers’ privacy risk to

not further increase than a factor 20 (ε = 3). However, in a practical marketing context an

adversary may never have the capabilities to fully exploit the privacy risk that is admissible.

For example, DPSGD from Abadi et al. (2016) assume that an adversary has access to a

data protection method’s weights during training, which might never occur in marketing

practice.

In this section, we return to the churn application and consider a privacy attack to

investigate whether differential privacy’s upper bound overstates the privacy risk possible

in marketing practice. Initial evidence suggests that a large gap may exist between the

theoretical bound and its empirical estimate when the capabilities of an adversary are reduced

by its context (Nasr et al. 2021). For example, for a theoretical upper bound of ε = 4, Nasr

et al. (2021) obtain an empirical estimate of ε̂ = .31. In our privacy attack, we compare

our proposed method (GANs with differential privacy) with four alternative data protection

methods: 5%, 20%, and 50% swapping; a Gaussian copula from Danaher and Smith (2011);

GANs without differential privacy from Anand and Lee (2022); and, finally, the real data.8

8We do not compare our method with Bayesian shrinkage from Schneider et al. (2018) because their method only

generates a single variable instead of a multivariate data set.
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Benchmarks

Swapping. For each variable that is present in the data set, we randomly select 5%, 20%,

and 50% of the observations and shuffle them randomly.

Gaussian copula. On the entire data set, we estimate a Gaussian copula model from

Danaher and Smith (2011). Once we have fitted the Gaussian copula, we can sample data

using MCMC sampling from the posterior distribution.

GANs without differential privacy. As a final benchmark, we use the DCGANs without

differential privacy (which implies unbounded privacy risk) from Anand and Lee (2022).

The European Commission and, specifically, European Data Protection Supervisor (2022)

note that synthetic data is vulnerable to privacy attacks. To offer a fair benchmark, the

GANs’ architectures with differential privacy are an exact copy of the architectures without

differential privacy. We only vary the discriminators’ optimizer where we apply DPSGD to

satisfy differential privacy (Abadi et al. 2016).

Likelihood-based privacy attack

To obtain an estimate of the empirical privacy risk, we employ a likelihood-based mem-

bership inference attack in case of the churn application that we studied previously in this

paper. The objective of our attack is to infer whether an individual was included in a model’s

training set (also see Carlini et al. 2021; Chen et al. 2019; Jayaraman et al. 2020; Nasr

et al. 2021; Yeom, Fredrikson, and Jha 2017). The membership attack set up is as follows:

1. A first marketer samples a training data set D from the dgp D and trains a data

protection method f(θ̂) (e.g., a GAN).

2. A second marketer samples another data set D̃ from D and trains the same data

protection method. This likely leads to different weights in the model: f(θ̃).

3. An adversary requests protected samples from both f(θ̂) (i.e., training sample) and

f(θ̃) (i.e., adversary sample) and estimates the probability density functions of both
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samples (i.e., ptraining and padversary).

4. The adversary receives a data point xi that is a sample from the training set D or from

the dgp D (i.e., the observations in D and D̃ are distinct).

5. The adversary scores these data points on both ptraining and padversary. If ptraining(xi) >

padversary(xi), then the adversary decides that xi is from the training set D.

By following this procedure, we can estimate the empirical epsilon as follows (Carlini

et al. 2021):

ε̂ = max

(
log

1− FPR

FNR
, log

1− FNR

FPR

)
(10)

where FPR measures the false positive rate (or probability of membership given non-member-

ship of the training data) and FNR denotes the false negative rate (or probability of mem-

bership given non-membership of the training data). We simulate the procedure 100 times

and present the estimates of the average privacy risk in Figure 10.9 We measure loss of util-

ity with the MAPDs from the churn application described in the “Marketing Applications”

section.

From Figure 10, we conclude that the DCGANs with differential privacy (e.g., ε = 1 or 5)

outperform existing data protection methods, including GANs without differential privacy.

For the real data, we find an empirical epsilon of ∞. For 5%, 20%, and 50% swapping, we

find empirical epsilons of 1.28, .51, and .13, respectively. This translates to a 3.59-, 1.67- and

1.14-factor increase in customers’ privacy risk. For the Gaussian copula and GAN without

differential privacy, we observe an empirical epsilon of .12 and .06 (or 1.13- and 1.06-factor

increases in customers’ privacy risk), respectively. In line with Nasr et al. (2021), we find

a large gap between the theoretical upper bound of privacy risk (ε) and empirical privacy

risk ε̂. For example, when we set the theoretical upper bound to 5, we find an empirical

epsilon of .02. Instead of a 14,741% increase in customers’ privacy risk, a privacy attacker

9We simulate the GANs and Gaussian copula models 20 times.
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Figure 10: The trade-off between privacy (empirical epsilon) and loss of utility (MAPD)
from the churn application. We limit the x-axis at .125.

in a marketing context is only capable of increasing the privacy risk 2%. For additional

(technical) reasons why such a gap may exist, we refer the reader to Nasr et al. (2021).

DISCUSSION

The majority of the marketing literature focuses on measuring and improving customers’

privacy perceptions that are difficult to quantify (e.g., Beke et al. 2022; Goldfarb and Tucker

2011; Martin, Borah, and Palmatier 2017). This paper proposes a framework that combines

differential privacy and GANs to learn any marketing data set’s complex joint distribution

and protect consumers’ privacy risk in a mathematically rigorous way. A key distinguishing

feature from earlier work is that our method allows us to quantify and interpret the privacy

risk that comes with deriving marketing insights (i.e., utility). We apply our method to two

privacy-sensitive marketing applications and visualize the trade-off a manager, researcher,
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or policy maker must make between privacy risk and utility. We find that they have to

pay a high price in terms of privacy risk to derive meaningful insights. For example, if a

customer is included in a churn analysis its privacy risk increases by a factor of 20. In a

pharmaceutical marketing case, we find that for insights at an increasingly granular level,

we must pay an even higher privacy risk price. To reduce this privacy risk, GDPR requires

data minimization. In contrast to current beliefs, we find that the way to further reduce

customers’ privacy risk is to maximize data collection. Specifically, a larger sample size to

train our framework reduces consumers’ privacy risk. Intuitively, one can think of this as a

“Where’s Waldo” effect; customers can improve their privacy by hiding in a large crowd.

Although our findings imply a substantial privacy risk cost in exchange for utility, we

end our paper with a comforting message. Due to the restrictions imposed by a marketing

context, a privacy attacker does not have the capabilities to fully exploit the privacy risk that

is admissible by differential privacy. We develop a likelihood-based membership inference

attack which allows analysts to estimate differential privacy’s privacy risk. We observe a

large gap between the theoretical privacy risk (from differential privacy) and our customers’

privacy risk estimates. In line with existing literature (e.g., Nasr et al. 2021), we find that

customers’ privacy risk only increases with a factor of 1.02 instead of a theoretical 148-factor

increase in privacy risk. In terms of existing data protection methods that do not satisfy

differential privacy, we do not find a high empirical privacy risk, but we stress that this risk

is unbounded and thus may grow to infinity over time.

Our study has two major managerial implications. First, our findings suggest that firms

need to be extremely careful when relying on existing data protection methods that do

not satisfy differential privacy. When using such methods, firms run the risk of their cus-

tomers being re-identified, and the potential privacy risk that customers run is theoretically

unbounded (Dinur and Nissim 2003). Existing methods allow for the possibility that cus-

tomers’ privacy risk may grow to be extremely large. Therefore, firms that do not rely

on differential privacy to limit their customers’ privacy risk remain vulnerable to privacy
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scandals (e.g., Netflix, Facebook and Cambridge Analytica). Our findings emphasize the

importance for firms to adopt differential privacy and transparently communicate, control,

and protect their customers’ privacy (Martin, Borah, and Palmatier 2017). Second, we pro-

vide a framework to navigate the trade-off between privacy risk and utility. We demonstrate

that to simultaneously improve customers’ privacy protection and the ability to derive in-

sights, firms should maximize data collection. This “Where’s Waldo” effect is strongest for

a small sample size and becomes weaker as the sample size becomes increasingly large.

Our findings also have implications for public policy makers. First, our study corrobo-

rates the European Data Protection Supervisor (2022)’s idea that existing data protection

methods remain vulnerable to privacy attacks and that, currently, differential privacy is the

only method that provides theoretical privacy protection guarantees. Second, our findings

indicate a need to reflect on (or further specify) GDPR’s directive to minimize data collec-

tion. Currently, GDPR considers large-scale data collection as a threat to one’s privacy and

that no data collection at all implies perfect privacy protection. In contrast, our findings

show that customers’ privacy protection is actually strengthened by data collection maxi-

mization. This new perspective on data collection could have positive consequences for not

only privacy protection but also, among others, economic growth, and societal and scientific

progress (European Commission 2021).

Finally, an implication for the scientific community is that researchers who use our frame-

work can publish differentially private data to increase their studies’ replicability. Alterna-

tively, it promotes data sharing among researchers, which potentially improves scientific

progress both within and outside the field of marketing.

Limitations and future research

One limitation of our study is that there a literature stream in computer science that

mathematically derives ways to reduce the cost of privacy risk (from differential privacy) in

exchange for utility (e.g., Abadi et al. 2016; Ghazi et al. 2021; Papernot et al. 2018). In this
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study, we focus on putting the currently state-of-the-art DPSGD algorithm to marketing

practice. However, as the computer science literature develops ways to satisfy stronger

levels of differential privacy without hurting utility, we expect our privacy-utility trade-offs

to shift closer to the origin. Simultaneously, the results from our privacy attack questions

whether the marketing literature needs further improvements, as we already observe a very

low privacy risk in (marketing) practice. We urge future research to further examine the

empirical privacy risk by varying the assumptions on what an attacker may have access to

(e.g., the generator’s weights or auxiliary data).

Another limitation is that we do not apply GANs to unstructured data. Recently, the

marketing literature has started to uncover the value of unstructured data to inform mar-

keting actions. Given that GANs are able to approximate any dgp, they should also be

able to sample unstructured data such as high-resolution images or text. Given the vast

literature on image generation, we do not pursue such an application (Denton et al. 2015;

Goodfellow et al. 2014; Karras et al. 2017; Salimans et al. 2016). Another fruitful area of

research would be to sample artificial text using GANs. Text data are often represented

by discrete sequences, which introduce difficulties with respect to the convergence of GANs

(see Goodfellow 2016). To circumvent such difficulties, the AI literature (e.g., Kusner and

Hernández-Lobato 2016) has proposed numerous solutions. We suggest the application of

GANs with differential privacy to preserve individuals’ privacy in text data as an area for

future research.
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APPENDIX: THE GAN’S GENERATOR AND CONVOLUTION
OPERATION.

The generator’s architecture is as follows:

z ∼ N(0, 1)
468

dense layer
468 reshape

52x9
conv2D
52x9x128

conv2D
52x9x64

conv2d
52x9x1

Figure 11: Topology of the GAN’s generator. Sizes at the layers refer to output shape of
the layer. For the convolutional layers (conv2D), the last dimension refers to the number of
kernel matrices (see Radford, Metz, and Chintala 2015). Each kernel matrix learns its own

weights.

To learn the dynamics in a physician’s matrix X i, we use convolutional layers with a
kernel K that work as follows:

0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

X i ∈ Rt×k

∗ 1 0

1 0

K

=
0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0
X ∗K

Figure 12: Example of a 2D convolution operation. To keep the same size of the result
X ∗K, we can use zero padding, which adds zeros to the vector X to ensure that the

outcome remains of the same dimensionality.

40


	Introduction
	Existing data protection methods
	Marketing literature
	Computer science literature

	Methodology
	Differential privacy
	GANs
	Formal objective
	The “Where's Waldo?" effect

	Marketing applications
	Application 1: Sharing cross-sectional churn data
	Application 2: Sharing sensitive panel drug prescription data

	The privacy-utility trade-off in marketing
	Benchmarks
	Likelihood-based privacy attack

	Discussion
	Limitations and future research

	Appendix: The GAN's generator and Convolution operation.

